

also supported this formula. Compound **1** showed $\lambda_{\text{max}}^{\text{CHCl}_3}$ 652(sh), 600, 377, 350, 338(sh), 305(sh), 292, 286 nm; $\nu_{\text{max}}^{\text{film}}$ 3040, 2930, 2840, 1900, 1550, 1520, 1455, 1420, 1385, 1360, 1280, 1220, 1190, 1160, 1045, 1015, 985, 955, 915, 810, 770, 705, 645 cm^{-1} ; $^1\text{H-NMR}$ (100 MHz, δ , CDCl_3) 1.35(d, 7 Hz, 6 H), 2.66(s, 3 H), 2.81(s, 3 H), 3.07(m, 1 H), 6.97(d, 11 Hz, 1 H), 7.21(d, 4 Hz, 1 H), 7.38(dd, 1.5, 11 Hz, 1 H), 7.61(d, 4 Hz, 1 H), 8.18(d, 1.5 Hz, 1 H); $^{13}\text{C-NMR}$ (25 MHz, δ , CDCl_3) 12.9(q), 24.0(q), 24.8(q, q), 38.2(d), 112.7(d), 125.0(d), 125.1(s), 133.2(d), 134.8(d), 136.1(d), 136.2(s), 137.3(s), 139.8(s), 144.2(s). These spectral data coincide well with the reported data^{5,6} for guaiazulene as does its mass spectrum; m/z 198(M^+ , 17%), 183(15), 168(10), 165(8), 155(7), 153(10), 141(9), 128(11), 115(12), 69(14), 28(100). Furthermore, our azulene was identical with an authentic sample (Aldrich Chem. Co.) in every respect.

Guaiazulene has so far been found in the essential oils of terrestrial plants^{7,8} and in a marine red alga⁹. To our knowledge this is the first isolation of guaiazulene from an animal, though some sesquiterpenes possessing the guaiane skeleton have been reported from gorgonians². *E. erecta* has brilliant blue polyps, which are exceptional among related gorgonians. Apparently this blue color is due to the occur-

rence of guaiazulene. It is also likely that guaiazulene plays a defensive role in this coral. It is interesting to speculate on the origin and the mode of concentration of the pigment.

- 1 We are grateful to Professor Paul J. Scheuer, the University of Hawaii, for reading this manuscript, and to Dr K. Aizawa, Department of Agricultural Chemistry of this university, for the measurement of the high resolution mass spectra. This work was partly supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture of Japan.
- 2 B. Tursch, J.C. Brackman, D. Dalozzo and M. Kaisin, in: *Marine Natural Products*, vol. 2, p. 247. Ed. P.J. Scheuer. Academic Press, New York 1979.
- 3 L.S. Ciereszko and T.K.B. Karns, in: *Biology and Geology of Coral Reefs*, vol. 2, *Biology I*, p. 183. Ed. O.A. Jones and R. Endean. Academic Press, New York 1973.
- 4 Y. Hashimoto, *Marine Toxins and Other Bioactive Marine Metabolites*. Jap. Scient. Soc. Press, Tokyo 1979.
- 5 D. Meuche, B.B. Molly, D.H. Reich and E. Heilbronner, *Helv. chim. Acta* 46, 2483 (1963).
- 6 J.R. Llinas, D. Roard, M. Derbesy and E.J. Vincent, *Can. J. Chem.* 53, 2911 (1975).
- 7 A.J. Haagen-Smit, *Fortschr. Chem. org. Natstoffe* 5, 40 (1948).
- 8 T. Nozoe and S. Ito, *Fortschr. Chem. org. Natstoffe* 19, 32 (1961).
- 9 B.M. Howard and W. Fenical, *Tetrahedron Lett.* 1978, 2453.

Sapintoxin A, a new biologically active nitrogen containing phorbol ester

S. E. Taylor, M. A. Gafur¹, A. K. Choudhury and F. J. Evans

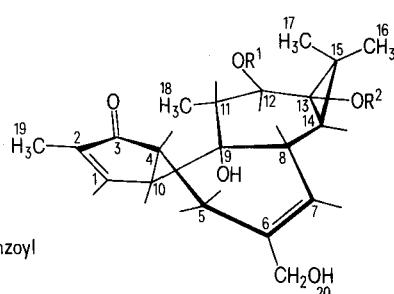
Department of Pharmacognosy, The School of Pharmacy, University of London, 29-39, Brunswick Square, London, WC1N 1AX (England), 28 November 1980

Summary. From the unripe fruits of *Sapium indicum*, an irritant compound, sapintoxin, was isolated. Spectroscopic data together with selective hydrolysis and partial synthesis confirmed sapintoxin as 12-O-[N-methylaminobenzoyl]-13-O-acetyl-4-deoxyphorbol.

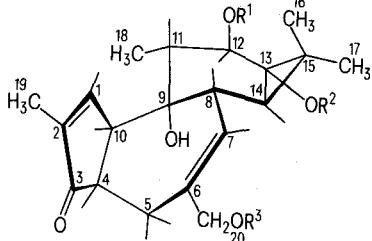
Sapium indicum, a well-known Indian poisonous plant and piscicidal agent² has previously been investigated for its toxic principles³. However only the nonbiologically active substance, sapinine, was isolated. Using a new method of purification which involves highspeed centrifugal liquid chromatography (CLC) followed by neutral adsorption TLC and partition chromatography⁴ we have been able to isolate a nitrogen containing phorbol ester from this plant. This compound, present in high yield from the unripe fruits, was termed sapintoxin A and represents the first nitrogen containing phorbol derivative to be isolated which demonstrates biological activity *in vivo* using an erythema skin test⁵.

Unripe fruits were powdered and macerated for 2 weeks with acetone at room temperature. The residue left after removal of acetone below 45 °C was dissolved in 40% methanol and the steroids and lipids removed by partition with hexane. Sapintoxin was obtained as an impure resin after extraction of the methanol-phase with ether. The ether soluble resin was fractionated by CLC using a 4-mm porous silica gel disc at a flow rate of 4 ml/min and eluting in a gradient of hexane-toluene-ethylacetate. Fractions were collected at 2-min intervals and monitored by a UV flow-cell, analytical TLC and a biological test⁵. Fractions 54-59 contained sapintoxin together with yellow pigment and were bulked for further purification. Final purification was achieved using 1stly preparative layer TLC (silica gel G, 500- μm layers, buffered at pH 7.0, eluant, cyclohexane-

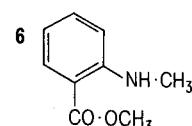
toluene-ethylacetate-ether 20-15-40-30) (R_f 0.1) and 2ndly partition chromatography (kieselguhr, 500 μm , buffered pH 7.0, coated with 20% diethylene glycol, eluant, cyclohexane-butanone 70-30) (R_f 0.48). Compound **1**, sapintoxin, yield 250 mg, was shown to be a single substance on the basis of its TLC and mass-spectral characteristics. The spectral data for **1** was as follows:


MS: (electron impact, 70 eV, 210°), m/z 523 (M^+ , 4%, $\text{C}_{30}\text{H}_{37}\text{O}_7\text{N}$), 373 (5%), 313 (6%), 295 (3%), 151 (100%), 81 (56%); UV: λ_{max} (MeOH), 207 (shoulder, ϵ = 46,443), 222 (ϵ = 49,791), 252 (ϵ = 17,155), 356 (ϵ = 9205) nm. IR: (solvent chloroform), ν_{max} 3480, 1720, 1685, 1580 cm^{-1} ; PMR: (250 MHz, CDCl_3 , TMS = 0.000 ppm), δ 7.842 (d,d., J = 1.8 and 7.8 Hz, 1H-aromatic), 7.704 (d, J = 5.05 Hz, $H\text{N}-$ exchangeable with D_2O), 7.572 (s, 1H-1), 7.420 (t, J = 7.3 Hz, 1H-aromatic), 6.695 (d, J = 7.8 Hz, 1H-aromatic), 6.595 (t, J = 7.8 Hz, 1H-aromatic), 5.685 (s, 1H-9, exchangeable with D_2O), 5.643 (d, J = 9.6 Hz, 1H-12), 5.559 (d, J = 4.13 Hz, 1H-7), 4.037 (s, 2H-20), 3.275 (m, 1H-10), 2.932 (d, J = 5.05 Hz, $\text{CH}_3\text{N}-$), 2.814 (m, 1H-4), 2.441 (m, 2H-5), 2.131 (s, 3H-acetyl), 1.739 (m, 3H-19), 1.32 and 1.254 (6H-16, 17), 1.224 (d, J = 5.15 Hz, 1H-14), 0.958 (d, J = 6.43 Hz, 3H-18). Irradiation at 7.704 ppm caused the 3H doublet at 2.932 ppm to collapse to a sharp singlet. A similar change in the doublet at 2.932 ppm occurred when the signal at 7.704 ppm was exchanged with D_2O . **1** was hydrolysed by means of methanolic KOH (0.1 M) at room temperature for 20 min. A single mono-ester **2** was

isolated using preparative partition TLC (eluent cyclohexane: Butanone 6:4, R_f 0.36). Compound **2** like **1** produced a bright blue fluorescence under long-wave UV-light.


MS: m/z 481 (M^+ , 7%, $C_{28}H_{35}O_6N$), 330 (10%), 312 (20%), 151 (100%), 81 (60%); UV: 207 λ_{max} (MeOH), (shoulder, $\epsilon = 21,164$), 222 ($\epsilon = 32,708$), 252 ($\epsilon = 13,708$), 356 ($\epsilon = 7215$) nm; PMR: (60 MHz, $CDCl_3-D_2O$), δ 7.4-8.0 (2 H-aromatic), 7.18 (s, 1 H-1), 6.40-6.90 (2 H-aromatic), 5.24 (d, 1 H-7), 5.21 (d, 1 H-12), 3.99 (s, 2 H-20), 3.66 (m, 1 H-10), 3.55 (m, 1 H-5 α), 2.94 (s, CH_3-N), 2.83 (m, 1 H-4), 2.55 (d.d., 1 H-5 β), 1.88 (m, 1 H-11), 1.82 (m, 3 H-19), 1.28 and 1.18 (6 H-16, 17), 1.15 (d, 3 H-18), 0.78 (d, 1 H-14). Compound **1** was converted to the cis orientated mono-ester 12-O-[N-methylamino benzoyl]-4 α -deoxyphorbol **2** by treatment with weak alkali. This conversion was evident from comparison of the PMR spectra of **1** and **2** where the following characteristic shifts in signals were recorded^{6,7}, 7.18 ppm in **2** from 7.572 ppm in **1** (1 H-1), 5.24 ppm from 5.56 ppm (1 H-7), 2.55 and 3.55 ppm from 2.44 ppm (2 H-5). Furthermore the disappearance of a 3 H-acetyl signal together with an upfield shift of the 1 H-12 signal from 5.64 ppm in **1** to 5.21 ppm in **2** indicated that the acetyl group in **1** was located at C-13 of the nucleus. The signal

at 5.21 ppm was confirmed as being due to the 1 H-12 because irradiation at 1.88 ppm (1 H-11) caused the doublet at 5.21 ppm to collapse to a sharp singlet. The upfield shift of the 1 H-12 signal due to hydrolysis of the reactive tertiary C-13 ester group has been confirmed previously using synthetic methods⁸. Treatment of compound **2** with pyridine/acetic anhydride (2/1) yielded the tri-ester **3** purified by partition TLC (solvent system cyclohexane: butanone 90:10, R_f 0.9). A single bright blue fluorescent reaction product was obtained; UV: λ_{max} (MeOH), 207 (shoulder, $\epsilon = 132,775$), 222 ($\epsilon = 193,512$), 252 ($\epsilon = 81,925$), 356 ($\epsilon = 45,200$) nm; MS: m/z 565 (M^+ , 22%, $C_{32}H_{39}O_8N$), 415 (18%), 355 (4%), 313 (7%), 295 (9%), 151 (100%), 134 (85%); PMR: (60 MHz, $CDCl_3-D_2O$), δ 7.4-8.0 (2 H-aromatic), 7.18 (s, 1 H-1), 6.40-6.90 (2 H-aromatic), 5.71 (d, 1 H-12), 5.24 (d, 1 H-7), 4.44 (bs, 2 H-20), 3.66 (m, 1 H-10), 3.55 (m, 1 H-5 α), 2.94 (s, CH_3-N), 2.83 (m, 1 H-4), 2.55 (d.d., 1 H-5 β), 2.09 and 2.21 (6 H-acetals), 1.88 (m, 1 H-11), 1.80 (m, 3 H-19), 1.28 and 1.18 (6 H-16, 17), 1.15 (d, 3 H-18), 0.81 (d, 1 H-14). The downfield shift in the PMR-spectrum of **3** of the 1 H signal at 5.71 ppm from 5.21 ppm in **2** and the downfield shift of the 2 H signal at 4.44 ppm from 3.99 ppm in **2** together with additional 3 H-acetyl signals at 2.09 and 2.21 ppm confirmed **3** as 12-O-[N-methylamino benzoyl]-13,20-diacetyl-4 α -deoxyphorbol.


The mono-ester **2** was resistant to hydrolysis with both perchloric acid and potassium hydroxide under mild conditions, as is the established case for 12-O-acyl tiglane esters⁸. Transesterification of **2** was achieved with sodium methoxide in methanol under nitrogen over a period of 16 h. This reaction produced a brown solution from which the polyol **4** and the blue fluorescent methyl ester **6** were isolated by means of TLC on silica gel using the solvent system $CHCl_3$: acetone 5:4 (R_f 0.07 and 0.75, respectively). **4** was obtained in only a 50% yield from this reaction. It was converted to its stable triacetate **5** by reaction with acetic anhydride: pyridine 2:1. Compound **5** was identical to the previously known 4 α -deoxyphorbol-12,13,20-triacetate⁶ (UV, IR, MS, PMR, TLC). The methyl ester **6** was identical to the methyl ester synthesised from commercially available N-methylaminobenzoic acid (Aldrich Chemicals Ltd.; UV, MS, TLC, PMR).

1 $R^1 = N$ -Methylaminobenzoyl
2 $R^2 = Acetyl$

2 $R^2 = R^3 = H$
3 $R^1 = N$ -Methylaminobenzoyl
4 $R^1 = R^2 = R^3 = Acetyl$
5 $R^1 = R^2 = R^3 = Acetyl$

Sapintoxin **1** was therefore confirmed as being 12-O-[N-methylaminobenzoyl]-13-O-acetyl-4-deoxyphorbol (fig.). This compound was found to be a rapidly acting pro-inflammatory agent on mammalian skin, but was considerably less potent than the well-known tumour-promoter and pro-inflammatory ester tetradecanoylphorbol-acetate⁹ from *Croton* seed oil.

- 1 B.C.S.I.R. Laboratories, P.O. Bayezied Bostami, Chittagong, Bangladesh.
- 2 R.N. Chopra, I.C. Chopra, K.L. Handa and L.D. Kapur, in: *Indigenous Drugs of India*, p. 589. U.N. Dhur & Sons Ltd., Calcutta 1958.
- 3 G.A. Miana, R. Schmidt, E. Hecker, M. Shamma, J.L. Moniot and M. Kiamuddin, *Z. Naturforsch.* 32b, 727 (1977).
- 4 F.J. Evans, R.J. Schmidt and A.D. Kinghorn, *Biomed. Mass-spectrom.* 2, 126 (1975).

- 5 F.J. Evans and R.J. Schmidt, *Inflammation* 3, 215 (1979).
- 6 G. Fürstenberger and E. Hecker, *Tetrahedron Lett.* 1977, 925.
- 7 G. Falsone and A.E.G. Crea, *Justus Liebigs Annln Chem.* 1979, 1116.
- 8 Ch.V. Szcepanski, H.U. Schairer, M. Gschwendt and E. Hecker, *Justus Liebigs Annln Chem.* 705, 199 (1967).
- 9 F.J. Evans and C.J. Soper, *Lloydia* 41, 193 (1978).